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Quasi-TEM Analysis of Microwave
Transmission Lines by the

Finite-Element Method

ZORICA PANTIC AND RAJ MITTRA, FELLOW, IEEE

Abstract —This paper describes a finite-element approach to the quasi-

TEM analysis of several different types of isolated and coupled microwave

transmission lines. Both the first- and higher order ordinary elements, as

well as singular and infinite elements, are used to solve for the potentiaf

and field dktributions in the cross section of the line. Next, the cross-sec-

tional field distribution is inserted in a variational expression to compute

the capacitance per unit length of the Uine, and the effective permittivity

and characteristic impedance of the line are obtained from the capacitance

value. A perturbational approach is developed for estimating the losses due

to conductor and dielectric dksipation and computing the attenuation

constant. Both the upper and lower bounds for the capacitance and the

characteristic impedance are found by solving the original and the corre-

sponding duaf problem.

Lines treatable by this method may contain an arbitrary number of

arbhrarily shaped conductors, inchrdkg a system of conductors placed

either above a single ground plane or between two parallel ground planes,

and inhomogeneous dielectric regions that can be approximated Iocafly by

a number of homogeneous subregions.

The results obtained using the finite-element procedure have been

compared for various types of microwave transmission lines and have been

found to agree well with available theoretical and measured data.

I. INTRODUCTION

T HE ACCURATE PREDICTION of the characteristic

impedance, attenuation, coupling, crosstalk, etc., in

microstrips, striplines, and similar transmission lines is

important in microwave and millimeter-wave integrated

circuits, digital circuit design, communication, and other

applications. The objective of this paper is to consider

microwave transmission lines with rather arbitrary config-

uration and to present a computer-aided analysis that

allows simple and accurate calculation of its design param-

eters.

In the past, microwave transmission lines have been

thoroughly investigated by many authors and many ap-

proaches to analyzing them have been devised, e.g., the

Green’s function techniques [1]-[6], conformal mapping
[7]–[9], variational methods [10], [11], Fourier transform

method [12], [13], Fourier integral method [14], spectral-
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domain method [15] -[17], boundary element method [18],

[19], and finite-element method [20]. All of the above

methods, with the exception of the last two are restricted

in their application to transmission lines in which the

conductors are thin strips and/or the dielectrics’ inserts

have planar interfaces. In contrast, the finite-element

method (FEM) is capable of handling transmission lines

with rather arbitrary configurations, since the lines treat-

able by this method may contain an arbitrary number of

conductors of arbitrary shape and inhomogeneous dielec-

tric regions that can be approximated locally by a number

of homogeneous subregions. Because of its generality, the

FEM is employed in this paper for the analysis of several

representative microwave transmission lines of practical

interest. The analysis is based on a quasi-TEM model

which is often adequate for microwave frequencies in

communication applications and for typical pulse rise times

of interest in high-speed digital circuit design.

Both the first- and higher order ordinary elements, as

well as singular and infinite elements, are used in the FEM

algorithm to solve for the quasi-static potential and the

corresponding field distribution in a microwave transmis-

sion line. The capacitance per unit length of the line is

obtained from a variational expression, and the effective

dielectric permittivity, characteristic impedance, and phase

velocity are also calculated. The upper and lower bounds

of the capacitance and the characteristic impedance are

derived by solving both the original and the dual problem.

Finally, a perturbation method is used to compute the

losses due to both the conductor and dielectric dissipa-

tions.

The characteristic impedance and loss characteristics

have been calculated for various transmission lines of

interest and very good agreement with available theoretical

and experimental data has been obtained.

II. FINITE-ELEMENT MODEL OF A MICROWAVE
TRANSMISSION LINE

Consider a microwave transmission line with an arbi-

trary cross section consisting of a number of arbitrarily

shaped conductors and inhomogeneous dielectric regions

which can be approximated locally by homogeneous subre-

gions (Fig. 1). Let us assume that the line is uniform along

its longitudinal (z) axis and let c and p ( = p ~) denote the
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Fig. 1. Cross section of a microwave transmission line.

permittivity and permeabi~ty, respectively, of the medium

in each homogeneous subregion.

We assume a quasi-TEM model, i.e., that the dominant

mode propagating along the line is a TEM mode. Under

this approximation, the problem is reduced to that of

finding the scalar potential function @,satisfying the Pois-

son’s equation

subject to the (appropriate) boundary conditions

(1)

(la)

where p is the volume charge distribution, E is the dielec-

tric permittivity, and rl and rz are complementary por-

tions of the boundary I’ of the domain S in which (1) is

defined.

In order to apply the finite-element approach to the

problem at hand, we formulate it in variational terms. The

correct solution of (1) is one that minimizes the energy

functional

(2)

Equation (1) is the Euler equation of the functional F [27]
satisfying the essential boundary condition of the Dirichlet

type, viz.,

+=*OOn I’l (2a)

and the natural boundary condition of the Neuman type,

i.e.,

(2b)

of nodes is used. On the other hand, a large number of

simple elements are clearly advantageous whete a com-

plicated boundary shape needs to be modeled.

However, when there are field singularities caused by

edges in the cross section of the line, a very fine mesh of

first- or high-order elements is required to obtain an

accurate solution. However, in order to improve accuracy

and reduce the number of necessary nodes, singular ele-

ments [22] are used in this study. A singular element with

labeled nodes and associated triangular polar coordinate

system (p, u) is shown in Fig. 2.

The global Cartesian coordinates are then

i
x=x1+ p[(x2-xJ+u(x3 -x2)]

~=~l+P[(y2 –yl)+u(y3–y2)]” (3a)

The scalar potential distribution function that takes into

account the field singularity at the node 1 (p = O) has the

following form:

where coefficient A is chosen in accordance with the

Meixner edge condition [23], and @l, 02,03 are corre-

sponding nodal potentials. The linear variation of the

scalar potential along the side 2–3 is provided so that the

element is compatible with first-order ordinary elements.

Although open-type transmission lines can be treated by

the conventional finite-element method with the shielding

far away from the region of interest, the computation

efficiency can be substantially improved if infinite ele-

ments [24] are used. Consider first the line consisting of a

number of conductors arbitrarily placed between two

parallel ground planes (Fig. 3(a)).

The entire domain can be divided into the near-field

region (n.f .), which is the region of interest, and the

far-field region (f.f.), which is unbounded. They have a

common boundary, referred to as the far-field boundary

(f. f.b.). The n.f. region is then divided into finite triangular

elements in the usual manner, while the f .f. region is

divided into infinite elements. Each infinite element has

two common nodes (lying on the f.f b.) with an ordinary

first-order element and two sides parallel to the x axis.

Consider the infinite element with nodes 1 and 2 (Fig.

3(b)) and introduce normalized coordinates

According to the FEM procedure, the cross section of [=;,V== XI< X< C0,YI<Y<Y2. (4a)
the line, domain S, is subdivided into finite elements in an Y2– Y1’

arbitrary manner provided that all the dielectric interfaces

coincide with the element sides. Although a variety of
Because of the presence of ground planes, the far field of

different elements can be chosen, the triangular first- or
the system is equivalently a dipole field. For such a dipole

higher order [21] elements are adopted in this study. It has
with translational symmetry, whose moment ~ is oriented

been shown [21] that the accuracy and efficiency of com-
along y axes, the scalar potential function in the cylin-

putation can be substantially enhanced via the use of the
drical coordinate system (r, 8 ) has the form

high-order elements, compared with the case where only p sin d

the first-order elements are employed if the same number
@D=—_

2m r “
(4b)
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Fig. 2. Singular element.
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Fig. 3. (a) Line consisting of a system of conductors placed between
two ground planes (n. f.: near field; f. f.: far field; f. f.b.: far-field
boundmy). (b) Infinite element type L

Written in the x, y system, ~~ is given by

(4C)

Thus, in the normalized coordinates &II the lpotential

function r#Ican be written in terms of the nodal potentials

al, and Qz as

(4d)

The next type of open region problem involves a system

of conductors above a ground plane. The procedure is

similar to that in the previous case. The entire domain is

divided into n.f. and f.f. regions (Fig. 4(a)). The n.f. region

is divided into the usual triangular mesh and the f.f. region

is divided into infinite elements of two different types, I

and II. The infinite element type I is the element previ-

ously discussed. Consider now the infinite element of type

II with nodes 1, 2 and radial sides intersecting at point

(xo, Yo) (Fig. 4(b)) and introduce triangular polar coordi-

,

——

GROUND PLANE

(a)

(b)

Fig. 4. (a) Line consisting of a system of conductors placed above
ground plane. (b) Infinite element type II.

nates p, u, which are related to the global Cartesian coordi-

nates by the relations

x=xo+p[(xl –xo)+o(x2– xl)]

Y= Yo=P[(Y1– Yo)+fJ(Y2-Yl)]. (5a)

The scalar potential distribution within the element is

approximated by

+=; [’3,(1-0)+%.] (5b)

where @l, Oz are nodal potentials.

For both types of infinite elements, the linear variation

of the potential function along the side 1–2 (common side

with a corresponding ordinary element) is provided. These

elements are compatible with ordinary first-order elements

and satisfy completeness, finiteness, and radiation condi-

tions [24].

Once the potential distribution is

tance per unit length C is readily

variational expression

2W
c=—

V2

known, the capaci-

obtained from the

(6a)

where W is the energy per unit length of the line and V is

the conductor potential. The upper and lower bounds of

the capacitance are found by solving the original and dual

problem [25].

The effective (dielectric) permittivity is

c
Ceff= —

co
(6b)
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where C is the capacitance of the actual line and Co is the Y

free-space capacitance of the line. The phase velocity is I
‘.+=* (6c)

where c is the velocity of light in free space. The character-

istic impedance is

1

(6d)

1

4(e,
e,

e,
K

The expressions given in (6a)–(6d) are for a single line,
I .

x

but the same procedure can be applied to find the capaci- Fig. 5. Ordinary triangular element.

tance and characteristic impedance for even and odd modes

of two coupled lines or to find capacitance and imped~ce element where vertices are labeled as nodes i, j, k (Fig. 5).
matrices for a system of n lines. The electromagnetic field Suppose that the side j – k is an imperfect conductor of

distribution can also be obtained surface resistance R,. Then the losses in that side can be

1+ expressed as
io=–vt&fio=–-Eo X5 (7a)

‘O
P:= ~[PiCOt6i +~COt Oj+P~COt O~] [Q]

where ,? is unit vector in the z direction and q is the

intrinsic impedance of the medium where [d)] is a column vector of nodal potentials for the

~ = (Po/~o%ff)l’2. (7b) element; Oz,Oj, fl~ are the included angles at vertices i, j, k,

respectively; and Pi, Pj, P~ are matrices of the numerical
Next, we employ a perturbational approach to solve for Coefficients which do not depend on the triangle shape.

the attenuation constants due to dielectric and conductor

losses
III. NUMERICAL AND EXPERIMENTAL RESULTS

Pd Pc
(8a) On the basis of described finite-element procedures, two

ad= 2P0 ‘ a’ = 2P0 different computer software packages have been developed

where P. is the time-averaged power flow along the line, for solving the problem at hand. The first of these is

and Pd and PC are the time-averaged powers dissipated in employed for semiautomatic mesh generation of first- or

the dielectrics and conductors, respectively. high-order ordinary elements, including singular and in-

Dielectric losses are calculated using the formula finite elements if necessary. The second package calculates

the potential and field distributions, capacitance per unit

J
P,= ~c tan~ Jio\2 dS (8b) length, characteristic impedance, effective permittivity, and

attenuation due to conductor and dielectric losses. The

where the loss tangent tan ii is assumed to be sufficiently linear system of equations derived from the application of

small so that the perturbed fields Ca+ be+approximated by the FEM method is rather sparse and special techniques

the fields for the lossless condition Eo, Ifo; o = 2 mf is the for the solution of such equations can be employed to

angular frequency; and Sdel is the area of cross section achieve enhanced computational efficiency. Two such

covered by the dielectric. techniques are the direct envelope method and the band

Losses due to the imperfect conductors are obtained via method with node reordering. These are useful for smaller

the conventional perturbation formula [26] problems with a few hundred nodes. For large systems of

equations (a few thousand nodes), the conjugate gradient

PC= R@ol~a~dl (8C) method is suggested because it requires the storage of only
c nonzero elements. Preconditioning is accomplished via in-

where R, is the surface resistance and Ifio I~m~ is the complete Cholesky decomposition [28], which leads to the

magnitude of the tangential magnetic field at the conduct- acceleration of the iteration procedure.

ing surfaces (line C’) for the lossless case. To demonstrate the quality and the accuracy of the

The average power propagating along the line is given finite-element-method analysis of the previous section, the

by solutions for sample problems are given and are compared
with available theoretical and ex~erimental data, as well as

A

JPO=Re (~oX~{).2dS (8d)
with measured results.

s The first example considered is the problem of a shielded,

multilayered, thick strip transmission line, shown in Fig. 6.
where S is the complete cross section of the line. The corresponding triangular mesh for one-half of the line

For the conductor lOSScalculation, special finite-element is presentedin Fig.I’.The chmacteristic impedance of the

matrices have been derived [27]. Consider a high-order line is c~culated for a few different thicknesses of the
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Fig. 6. Thick-strip transmission line with multidielectric layers and
shielding structure (!-rl = h~ = 0.4b; hz = 0.2b; 2W = 0.5b; cl = C3= co;

{2 = 9.35(.).

Fig. 7. Triangular mesh for thick-strip transmission line with 208 nodes

and 351 elements.

strip, t/b,as a function of ratio 2a/b (width and height

of the shielding) and is represented by the solid line in Fig.

8. Corresponding results obtained by the Green’s function

method [3] are denoted by the dashed line; good agree-

ment between the two sets of results is evident. It is found

that the influence of the side walls on the characteristic

impedance is negligible when the walls are sufficiently

removed from the strip, 2a/b >5.

For this example, the results obtained by using the

singular and the infinite elements are compared with those

derived by using only the ordinary elements. For the

configuration in Fig. 7, for 2a/b = 2, the lower and upper

bounds of the characteristic impedance me 52.85 Q and

55.20 !2, respectively, when only the first-order ordinary

elements are used and the mesh size N is 208 nodes. The

inclusion of singular elements causes the bounds to come

closer together, and the new values are found to be 53.47 Q

and 54.67 Q. Even with ordinary elements, the gap between

the lower and upper bounds can be narrowed by refining

the mesh in the vicinity of the strip. However, in order to

achieve accuracies comparable to those obtained with sin-

gular elements (ZCl = 53.40 Q and ZCU= 54.60 !2), the

number of nodes has to be increased substantially, to 548.

Thus, we observe that the use of singular elements results

in a significant reduction in the number of nodes.

Likewise, if the same mesh with 208 nodes is used in the

70
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~

N

40

30

I I I I I I I
I 2 345 7 10

2a/b

Fig. 8. Characteristic impedance Z of thick-strip transmission line.
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Fig. 9. Generic cross section of inverted microstrip with shielding strac-

ture (h = 0.381 mm: hl = 0.508 mm; f = O; 2a =10 mm; b =10 mm;
c = 3.78cO).

open-region geometry in conjunction with the infinite ele-

ments, the characteristic impedance is found to be ZC =

56.95 Q, which is close to that obtained (see Fig. 8) by

placing the side walls sufficiently far from the center strip,

say, by choosing 2a/b = 10.

The next example is an inverted microstrip whose generic

cross section [17], [19] is shown in Fig. 9. Calculated results
for the characteristic impedance as a function of aspect

ratio 2 w /h, denoted by the solid line, are compared with

the numerical results obtained via the boundary element

[BEM] method [19], shown by the dashed line in Fig. 10.

Good agreement, within 5 percent, is obtained. Data for

~ of the line as a function of aspect ratio 2w/h are

presented in Fig. 11. Finite-element results are denoted by

solid lines and BEM results by dashed lines. The measured

points shown in the same figure were obtained via

time-domain reflectometer measurements [29]. It can be

noted that FEM results are closer to the experimental

results than the BEM data. For the same example, attenua-

tion constants due to conductor aC and dielectric ad losses
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Fig. 10. Characteristic impedance Z of shielded inverted rnicrostrip line
versus shape ratio 2 w /h.
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10 2.0 30 40 .50
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Fig. 11. & of shielded inverted rnicrostrip line versus shape ratio
2w/h.

I —FEM I
-.— BEM.
--- SOM [17]

u=4 lx107mohlm
t0n8 =2x 10-4 I

I Frequency = 50GHz

9 J~ 07
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Fig. 12. Dielectric and conductor losses of shielded inverted microstrip
line versus shape ratio 2 w/h.

are calculated as functions of aspect ratio 2 w /h and

shown in Fig. 12 as solid curves. These data are compared

with BEM [19] and spectral-domain method [17] results,

shown in the same figure, and very good agreement is
found.

It should be pointed out that the accuracy of the calcu-

lation, especially of the loss calculations, can be signifi-

cantly enhanced via the use of singular elements. The odd

and even modes propagating on coupled lines can be

treated by the same finite-element procedure. Some of the

results for coupled lines are presented in [30].

b

Fig. 13. Shielded microstrip line (2a= 480 rail; b = 200 roil; h =30

roil; 2w= 93 roil; t= O.8mil; c= 2.2(.; tan8= 9X10–4: P= L7x10-8

0 – m; 1= 2.97 in).

,Fig.

Sll R-
REF 0.0 I-III!+*

5.0 mUn#ts/
$ 4.6911 mU.

50 0!+4 LINE MAY 21

START 150.0 P,
STOP 1.2 “,

14. Time-domain measured results.

Sll log MAG
REF 0.0 dB

0.25 dB/

START e .045000000 U-II
m 10.045000000 G1-lz

Fig. 15. Frequency-domain measured and calculated results of Sll

parameter.
_: open-circuit measured results.

_: short-circuit measured results.

_: calculated values.

In order to verify the accuracy of the finite-element
procedures, the characteristic impedance and losses of a

shielded microstrip line have been measured. The experi-

ment has been done on the line whose cross section and

dimensions are shown in Fig. 13. By using a HP 8510

Network Analyzer, time-domain reflectometer measure-

ments of characteristic impedance (Fig. 14) and
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frequency-domain measurements of the Sll parameter of

open- and short-circuited lines (Fig. 15) have been made.

The measured value of characteristic impedance is 48 Q,

while the calculated value is 48.1 Q. Excellent agreement

between measured and calculated values of the Sll param-

eter of the line is found.

IV. CONCLUSIONS

In this study, a finite-element procedure for quasi-TEM

analysis of microwave transmission lines is presented. The

method is capable of handling microwave transmission

lines with rather arbitrary configurations. Both first- and

high-order triangular elements are employed. In the case of

open-region problems (conductors over one or between

two parallel ground planes) and edge singularity problems,

the accuracy and efficiency of the method are enhanced

via the use of infinite and singular elements. By solving

both the original and the corresponding dual problem, the

lower and upper bounds of the capacitance and the char-

acteristic impedance are found. For the solution of finite-

element linear equations, the band or the envelope matrix

method (with reverse Cuthill-McI{ee reordering) is used

for smaller systems and the incomplete Cholesky conjugate

gradient method for large systems.

Computer software for semiautomatic mesh generation

as well as for calculation of capacitance per unit length,

effective permittivity, characteristic impedance, and at-

tenuation due to conductor and dielectric losses has been

developed.

Results obtained for various types of microwave trans-

mission lines are in very good agreement with available

theoretical and experimental data.

The method presented is both versatile and accurate. It

can be readily extended to the lines with anisotropic

media. Similar 3-D finite-element analysis would be a

powerful tool for the calculation and design of connectors

or lines with discontinuities. In future work, the authors

plan to extend the FEM procedure to a full-wave analysis

of microwave transmission lines.
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