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Abstract —This paper describes a finite-element approach to the quasi-
TEM analysis of several different types of isolated and coupled microwave
transmission lines. Both the first- and higher order ordinary elements, as
well as singular and infinite elements, are used to solve for the potential
and field distributions in the cross section of the line. Next, the cross-sec-
tional field distribution is inserted in a variational expression to compute
the capacitance per unit length of the line, and the effective permittivity
and characteristic impedance of the line are obtained from the capacitance
value. A perturbational approach is developed for estimating the losses due
to conductor and dielectric dissipation and computing the attenuation
constant. Both the upper and lower bounds for the capacitance and the
characteristic impedance are found by solving the original and the corre-
sponding dual problem.

Lines treatable by this method may contain an arbitrary number of
arbitrarily shaped conductors, including a system of conductors placed
either above a single ground plane or between two parallel ground planes,
and inhomogeneous dielectric regions that can be approximated locaily by
a number of homogeneous subregions.

The results obtained using the finite-element procedure have been
compared for various types of microwave transmission lines and have been
found to agree well with available theoretical and measured data.

I. INTRODUCTION

HE ACCURATE PREDICTION of the characteristic

impedance, attenuation, coupling, crosstalk, etc., in
microstrips, striplines, and similar transmission lines is
important in microwave and millimeter-wave integrated
circuits, digital circuit design, communication, and other
applications. The objective of this paper is to consider
microwave transmission lines with rather arbitrary config-
uration and to present a computer-aided analysis that
allows simple and accurate calculation of its design param-
eters.

In the past, microwave transmission lines have been
thoroughly investigated by many authors and many ap-
proaches to analyzing them have been devised, e.g., the
Green’s function techniques [1]-[6], conformal mapping
[7]-[9], variational methods [10], [11], Fourier transform

method [12], [13], Fourier integral method [14], spectral-
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domain method [15]-[17], boundary element method [18],
[19], and finite-element method [20]. All of the above
methods, with the exception of the last two are restricted
in their application to transmission lines in which the
conductors are thin strips and/or the dielectrics’ inserts
have planar interfaces. In contrast, the finite-element
method (FEM) is capable of handling transmission lines
with rather arbitrary configurations, since the lines treat-
able by this method may contain an arbitrary number of
conductors of arbitrary shape and inhomogeneous dielec-
tric regions that can be approximated locally by a number
of homogeneous subregions. Because of its generality, the
FEM is employed in this paper for the analysis of several
representative microwave transmission lines of practical
interest. The analysis is based on a quasi-TEM model
which is often adequate for microwave frequencies in
communication applications and for typical pulse rise times
of interest in high-speed digital circuit design.

Both the first- and higher order ordinary elements, as
well as singular and infinite elements, are used in the FEM
algorithm to solve for the quasi-static potential and the
corresponding field distribution in a microwave transmis-
sion line. The capacitance per unit length of the line is
obtained from a variational expression, and the effective
dielectric permittivity, characteristic impedance, and phase
velocity are also calculated. The upper and lower bounds
of the capacitance and the characteristic impedance are
derived by solving both the original and the dual problem.
Finally, a perturbation method is used to compute the
losses due to both the conductor and dielectric dissipa-
tions.

The characteristic impedance and loss characteristics
have been calculated for various transmission lines of
interest and very good agreement with available theoretical
and experimental data has been obtained.

II. FINITE-ELEMENT MODEL OF A MICROWAVE
TRANSMISSION LINE

Consider a microwave transmission line with an arbi-
trary cross section consisting of a number of arbitrarily
shaped conductors and inhomogeneous dielectric regions
which can be approximated locally by homogeneous subre-
gions (Fig. 1). Let us assume that the line is uniform along
its longitudinal (z) axis and let € and p ( = p,) denote the
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Fig. 1. Cross section of a microwave transmission line.
permittivity and permeability, respectively, of the medium
in each homogeneous subregion.

We assume a quasi-TEM model, i.e., that the dominant
mode propagating along the line is a TEM mode. Under
this approximation, the problem is reduced to that of
finding the scalar potential function ¢ satisfying the Pois-
son’s equation

A¢=—§ 0y

subject to the (appropriate) boundary conditions

(1a)

where p is the volume charge distribution, e is the dielec-
tric permittivity, and I'; and I, are complementary por-
tions of the boundary T of the domain S in which (1) is
defined.

In order to apply the finite-element approach to the
problem at hand, we formulate it in variational terms. The
correct solution of (1) is one that minimizes the energy
functional

¢
¢ = ¢, on I‘l’%:()on L,

(2)

Equation (1) is the Euler equation of the functional F [27]
satisfying the essential boundary condition of the Dirichlet
type, viz.,

Fes €|qu|2dS-—qu5dS.
2Js S

¢=¢gon I} (2a)
and the natural boundary condition of the Neuman type,
ie.,

%2 oon T,. (2b)

dn

According to the FEM procedure, the cross section of
the line, domain S, is subdivided into finite elements in an
arbitrary manner provided that all the dielectric interfaces
coincide with the element sides. Although a variety of
different elements can be chosen, the triangular first- or
higher order [21] elements are adopted in this study. It has
been shown [21] that the accuracy and efficiency of com-
putation can be substantially enhanced via the use of the
high-order elements compared with the case where only
the first-order elements are employed if the same number
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of nodes is used. On the other hand, a large number of
simple elements are clearly advantageous where a com-

* plicated boundary shape needs to be modeled.

However, when there are field singularities caused by
edges in the cross section of the line, a very fine mesh of
first- or high-order elements is required to obtain an
accurate solution. However, in order to improve accuracy
and reduce the number of necessary nodes, singular ele-
ments [22] are used in this study. A singular element with
labeled nodes and associated triangular polar coordinate
system (p, o) is shown in Fig. 2.

The global Cartesian coordinates are then

i

x=x+p[(x;= %)+ 0(x3—x,)]
y=)’1+P[()’2_J’1)+°(J’3_)’2)]- (3a)

The scalar potential distribution function that takes into
account the field singularity at the node 1 (p = 0) has the
following form:

: 1
¢=0,(1-p*)+ 0,0 (1-0) + 0,p", —2—<7\<1

(3b)

where coefficient A is chosen in accordance with the
Meixner edge condition [23], and ®,,®,, P, are corre-
sponding nodal potentials. The linear variation of the
scalar potential along the side 2-3 is provided so that the
element is compatible with first-order ordinary elements.

Although open-type transmission lines can be treated by
the conventional finite-element method with the shielding
far away from the region of interest, the computation
efficiency can be substantially improved if infinite ele-
ments [24] are used. Consider first the line consisting of a
number of conductors arbitrarily placed between two
parallel ground planes (Fig. 3(a)).

The entire domain can be divided into the near-field
region (n.f.), which is the region of interest, and the
far-field region (f.f.), which is unbounded. They have a
common boundary, referred to as the far-field boundary
(£.£b.). The n.f. region is then divided into finite triangular
elements in the usual manner, while the f.f. region is
divided into infinite elements. Each infinite element has
two common nodes (lying on the f.fb.) with an ordinary
first-order element and two sides parallel to the x axis.

Consider the infinite element with nodes 1 and 2 (Fig.
3(b)) and introduce normalized coordinates

X Y—Nh
£=——\’7’= s
X V=N

X <x<00, )< y< . (4a)

Because of the presence of ground planes, the far field of
the system is equivalently a dipole field. For such a dipole
with translational symmetry, whose moment g is oriented
along y axes, the scalar potential function in the cylin-
drical coordinate system (r, #) has the form

= _£_ ﬂ . (4b)

2 27 ¥
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Fig. 2. Singular element.
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Fig. 3. (a) Line consisting of a system of conductors placed between
two ground planes (n.f.: near field; f.f.: far field; ffb.: far-field
boundary). (b) Infinite element type L.

Written in the x, y system, ¢, is given by
_r
27e x?

(4c)

Thus, in the normalized coordinates £, 1 the potential
function ¢ can be written in terms of the nodal potentials
®,, and @, as

$p

1

¢=7€,—2[<I>1(1—n)+<1>2n]. (4d)

The next type of open region problem involves a system
of conductors above a ground plane. The procedure is
similar to that in the previous case. The entire domain is
divided into n.f. and f.f. regions (Fig. 4(a)). The n.f. region
is divided into the usual triangular mesh and the f.f. region
is divided into infinite elements of two different types, 1
and II. The infinite element type I is the element previ-
ously discussed. Consider now the infinite element of type
IT with nodes 1, 2 and radial sides intersecting at point
(x4, ¥o) (Fig. 4(b)) and introduce triangular polar coordi-
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(a) Line consisting of a system of conductors placed above
ground plane. (b) Infinite element type II.

Fig. 4.

nates p, 6, which are related to the global Cartesian coordi-
nates by the relations

x=x0+p[(x1—x0)+o(x2—x1)]
y=J’0=P[(J’1_)’o)+°()’2_)’1)]- (5a)

The scalar potential distribution within the element is
approximated by

1
¢=;[®1(1“°)+@2°] (5b)

where @, ®, are nodal potentials.

For both types of infinite elements, the linear variation
of the potential function along the side 1-2 (common side
with a corresponding ordinary element) is provided. These
elements are compatible with ordinary first-order elements
and satisfy completeness, finiteness, and radiation condi-
tions [24].

Once the potential distribution is known, the capaci-
tance per unit length C is readily obtained from the
variational expression

2w
C= 77 (6a)
where W is the energy per unit length of the line and V is
the conductor potential. The upper and lower bounds of
the capacitance are found by solving the original and dual
problem [25].

_The effective (dielectric) permittivity is
C

€eft = F (6b)
(4]
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where C is the capacitance of the actual line and C, is the
free-space capacitance of the line. The phase velocity is -

¢
v, = (6¢)
€etr

where ¢ is the velocity of light in free space. The character-
istic impedance is

(6d)

The expressions given in (6a)—(6d) are for a single line,
but the same procedure can be applied to find the capaci-
tance and characteristic impedance for even and odd modes
of two coupled lines or to find capacitance and impedance
matrices for a system of n lines. The electromagnetic field
distribution can also be obtained

—> - 1 g
Ej=-v¢,Hy=——E X2 (7a)
n
where 7 is unit vector in the z direction and 7 is the
intrinsic impedance of the medium

1/2
1= (Ho/€ckert) 7, (7b)
Next, we employ a perturbational approach to solve for

the attenuation constants due to dielectric and conductor
losses

Pd Pc 8
%= 5p, %7 2P, (82)

where P, is the time-averaged power flow along the line,
and P, and P, are the time-averaged powers dissipated in
the dielectrics and conductors, respectively.
Dielectric losses are calculated using the formula
P, = we tansf |E,)2dS (8b)
Ssiel
where the loss tangent tand is assumed to be sufficiently
small so that the perturbed fields can be approximated by
the fields for the lossless condition EO, ﬁo; w=2xf is the
angular frequency; and Sy, is the area of cross section
covered by the dielectric.
Losses due to the imperfect conductors are obtained via
the conventional perturbation formula [26]

(8¢)

where R, is the surface resistance and |ﬁ0|tang is the
magnitude of the tangential magnetic field at the conduct-
ing surfaces (line C) for the lossless case.

The average power propagating along the line is given
by

Pc = Rsfclﬁolgang dl

Py=Re [ (E,x Hy)-ds (8d)

s
where S is the complete cross section of the line.

For the conductor loss calculation, special finite-element
matrices have been derived [27]. Consider a high-order
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Fig. 5. Ordinary triangular element.

element where vertices are labeled as nodes i, j, k (Fig. 5).
Suppose that the side j—k is an imperfect conductor of
surface resistance R,. Then the losses in that side can be
expressed as

i_ K

= ?[Picot0i+ P,cot 8, + Pcot 6, ] [ @]

where [®] is a column vector of nodal potentials for the
clement; 6,6, 0, are the included angles at vertices 7, j, k,
respectively; and P, P, P, are matrices of the numerical
coefficients which do not depend on the triangle shape.

P

c

III.

On the basis of described finite-element procedures, two
different computer software packages have been developed
for solving the problem at hand. The first of these is
employed for semiautomatic mesh generation of first- or
high-order ordinary elements, including singular and in-
finite elements if necessary. The second package calculates
the potential and field distributions, capacitance per unit
length, characteristic impedance, effective permittivity, and
attenuation due to conductor and dielectric losses. The
linear system of equations derived from the application of
the FEM method is rather sparse and special techniques
for the solution of such equations can be employed to
achieve enhanced computational efficiency. Two such
techniques are the direct envelope method and the band
method with node reordering. These are useful for smaller
problems with a few hundred nodes. For large systems of
equations (a few thousand nodes), the conjugate gradient
method is suggested because it requires the storage of only
nonzero elements. Preconditioning is accomplished via in-
complete Cholesky decomposition [28], which leads to the
acceleration of the iteration procedure.

To demonstrate the quality and the accuracy of the
finite-element-method analysis of the previous section, the
solutions for sample problems are given and are compared
with available theoretical and experimental data, as well as
with measured results.

The first example considered is the problem of a shielded,
multilayered, thick strip transmission line, shown in Fig. 6.
The corresponding triangular mesh for one-half of the line
is presented in Fig. 7. The characteristic impedance of the
line is calculated for a few different thicknesses of the

NUMERICAL AND EXPERIMENTAL RESULTS
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Fig. 6. Thick-strip transmission line with multidielectric layers and
shielding structure (h; = hy = 0.4b; h, =02b; 2w=0.5b; ¢ = €53 = €;
€, =9.35¢).

Fig. 7. Triangular mesh for thick-strip transmission line with 208 nodes
and 351 elements.

strip, t/b, as a function of ratio 2a /b (width and height
of the shielding) and is represented by the solid line in Fig.
8. Corresponding results obtained by the Green’s function
method [3] are denoted by the dashed line; good agree-
ment between the two sets of results is evident. It is found
that the influence of the side walls on the characteristic
impedance is negligible when the walls are sufficiently
removed from the strip, 2a /b > 5.

For this example, the results obtained by using the
singular and the infinite elements are compared with those
derived by using only the ordinary elements. For the
configuration in Fig, 7, for 2a /b = 2, the lower and upper
bounds of the characteristic impedance are 52.85 £ and
55.20 &, respectively, when only the first-order ordinary
elements are used and the mesh size N is 208 nodes. The
inclusion of singular elements causes the bounds to come
closer together, and the new values are found to be 53.47 Q
and 54.67 . Even with ordinary elements, the gap between
the lower and upper bounds can be narrowed by refining
the mesh in the vicinity of the strip. However, in order to
achieve accuracies comparable to those obtained with sin-
gular elements (Z_,=53.40 @ and Z_,=54.60 @), the
number of nodes has to be increased substantially, to 548.
Thus, we observe that the use of singular elements results
in a significant reduction in the number of nodes.

Likewise, if the same mesh with 208 nodes is used in the
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Fig. 8. Characteristic impedance Z of thick-strip transmission line.
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Fig. 9. Generic cross section of inverted microstrip with shielding struc-
ture (h=0.381 mm: 4, =0.508 mm; r=0; 2a=10 mm; b =10 mm;
€=3.78¢;).

open-region geometry in conjunction with the infinite ele-
ments, the characteristic impedance is found to be Z, =
56.95 2, which is close to that obtained (see Fig. 8) by
placing the side walls sufficiently far from the center strip,
say, by choosing 24 /b =10.

The next example is an inverted microstrip whose generic
cross section [17], [19] is shown in Fig. 9. Calculated results
for the characteristic impedance as a function of aspect
ratio 2w /h, denoted by the solid line, are compared with
the numerical results obtained via the boundary element
[BEM] method [19], shown by the dashed line in Fig. 10.
Good agreement, within 5 percent, is obtained. Data for
\/fe: of the line as a function of aspect ratio 2w /h are
presented in Fig. 11. Finite-element results are denoted by
solid lines and BEM results by dashed lines. The measured
points shown in the same figure were obtained via
time-domain reflectometer measurements [29]. It can be
noted that FEM results are closer to the experimental
results than the BEM data. For the same example, attenua-
tion constants due to conductor «, and dielectric o, losses
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Fig. 10. Characteristic impedance Z of shielded inverted microstrip line
versus shape ratio 2w /h.
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JEeff
z

.05

2w/h

Fig. 11. /e of shielded inverted microstrip line versus shape ratio
2w/h.
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Fig. 12. Dielectric and conductor losses of shielded inverted microstrip
line versus shape ratio 2w /h.

are calculated as functions of aspect ratio 2w /h and
shown in Fig. 12 as solid curves. These data are compared
with BEM [19] and spectral-domain method [17] results,
shown in the same figure, and very good agreement is
found.

It should be pointed out that the accuracy of the calcu-
lation, especially of the loss calculations, can be signifi-
cantly enhanced via the use of singular elements. The odd
and even modes propagating on coupled lines can be
treated by the same finite-element procedure. Some of the
results for coupled lines are presented in {30].
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Fig. 13. Shielded microstrip line (2a =480 mil; =200 mil; A =30
mil; 2w =93 mil; = 0.8 mil; e=2.2¢,; tan§ = 9% 1074 p=1.7x 1078
Q- m; [=297 in).
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Fig. 14. Time-domain measured results.

log MAG
0.9 dB
9.25 dB/
PO OFM LINE (2557 1

S11
REF

nwr» o

BVESLeTY

START
STOP

0.045000000 GHz
10.045000000 GHz

Fig. 15. Frequency-domain measured and calculated results of Sp;
parameter.
___: open-circuit measured results.
—: short-circuit measured results.
___: calculated values.

In order to verify the accuracy of the finite-element
procedures, the characteristic impedance and losses of a
shielded microstrip line have been measured. The experi-
ment has been done on the line whose cross section and
dimensions are shown in Fig. 13. By using a HP 8510
Network Analyzer, time-domain reflectometer measure-
ments of characteristic impedance (Fig. 14) and
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frequency-domain measurements of the S;; parameter of
open- and short-circuited lines (Fig. 15) have been made.
The measured value of characteristic impedance is 48 €,
while the calculated value is 48.1 Q. Excellent agreement
between measured and calculated values of the S;; param-
eter of the line is found.

IV. CONCLUSIONS

In this study, a finite-element procedure for quasi-TEM
analysis of microwave transmission lines is presented. The
method is capable of handling microwave transmission
lines with rather arbitrary configurations. Both first- and
high-order triangular elements are employed. In the case of
open-region problems (conductors over one or between
two parallel ground planes) and edge singularity problems,
the accuracy and efficiency of the method are enhanced
via the use of infinite and singular elements. By solving
both the original and the corresponding dual problem, the
lower and upper bounds of the capacitance and the char-
acteristic impedance are found. For the solution of finite-
element linear equations, the band or the envelope matrix
method (with reverse Cuthill-McKee reordering) is used
for smaller systems and the incomplete Cholesky conjugate
gradient method for large systems.

Computer software for semiautomatic mesh generation
as well as for calculation of capacitance per unit length,
effective permittivity, characteristic impedance, and at-
tenuation due to conductor and dielectric losses has been
developed.

Results obtained for various types of microwave trans-
mission lines are in very good agreement with available
theoretical and experimental data.

The method presented is both versatile and accurate. It
can be readily extended to the lines with anisotropic
media. Similar 3-D finite-element analysis would be a
powerful tool for the calculation and design of connectors
or lines with discontinuities. In future work, the authors
plan to extend the FEM procedure to a full-wave analysis
of microwave transmission lines.
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